ORGANIC DERIVATIVES OF GERMANIUM VI. REACTIONS OF ORGANOGERMANIUM ALKOXIDES WITH CAR-BOXYLIC ACIDS

S. MATHUR AND R. C. MEHROTRA

Chemical Laboratories, University of Rajasthan, Jaipur (India) (Received April 28th, 1966)

The synthesis of a few organogermanium carboxylates has been described by Anderson¹⁻⁵ employing the reactions of the organogermanium oxide or halide with the corresponding acid or its silver salt respectively. Brook and Gilman⁶ prepared triphenylgermanium carboxylates by the cleavage of hexaphenyldigermane with sodium-potassium alloy followed by carbonation. Lesbre and Satge⁷ synthesised tributylgermanium acetate in quantitative yield by reacting tributylgermane with acetic acid in the presence of copper as a catalyst. Lutsenko and coworkers⁸⁻⁹ prepared several such derivatives by the reactions of trialkyl and dialkylgermanes or their iodides with esters of mercuri-bisacetic acid. Recently Rijkens and Van der Kerk¹⁰ have also reported the preparation of dibutylgermanium diacetate by refluxing a mixture of the appropriate oxide and excess acetic anhydride.

Reactions of carboxylic acids with alkoxides of a number of elements (Zr^{11} , Ge^{12} , Ti^{13} , Nd^{14} , Pr^{14} , Fe^{15} , Si^{16} , Al^{17} and V^{18}) have been studied in these laboratories. In view of interesting results¹² obtained in these reactions with tetraalkoxy germanes, it was considered worthwhile to study similar reactions with organogermanium alkoxides also.

It has been found that the reactions with simple carboxylic acids (like acetic and benzoic) were straightforward, while with hydroxycarboxylic acids (such as salicyclic and mandelic acids) the hydroxyl group took part in the reaction along with the carboxyl group. The reactions in general may be represented by the following equations:

Dibutylethoxygermanium acetate, tributylgermanium acetate and dibutylgermanium diacetate are distillable, colourless, mobile liquids, whereas diphenylethoxygermanium acetate distils as a colourless highly viscous liquid, which later on solidifies as white solid. Diphenylgermanium diacetate is a low melting solid. The derivatives of benzoic acid with all organogermanium alkoxides have been found to be highly viscous liquids and can be distilled under reduced pressure except in the case of diphenylgermanium dibenzoate, which appears to be very high boiling and could not be distilled. The reactions of dibutyl- and diphenyl-alkoxygermanes with salicylic and mandelic acids were completed in 1:1 molar ratios as represented above yielding distillable products. The mandelate is insoluble in benzene, whereas the salicylate is soluble and shows monomeric behaviour in the solvent.

The reactions of tributylgermanium alkoxide with salicylic and mandelic acids appear to be completed with a 2:1 ratio of alkoxide to acid; the products are TABLE 1

R ₂ Ge(OR) ₂ or Bu ₃ GeOR (g)	Acid added (g)	Product formed	Yield (%)	B.p. (°C/mm)
Bu ₂ Ge(OEt) ₂ 1.10	СН₃СООН 0.24	OEt Bu ₂ Ge OOCCH ₃	70	110/4
Bu ₂ Ge(OEt) ₂ 1.30	0.57	Bu ₂ Ge(OOCCH ₃) ₂	60	127/5
Ph ₂ Ge(OEt) ₂ 1.02	0.20	OEt Ph ₂ Ge OOCCH ₃	70	140/0.4
Ph ₂ Ge(OEt) ₂ 1.26	0.48	Ph2Ge(OOCCH3)2	60	150/0.2
Bu ₃ GeOEt 1.30	0.28	Bu ₃ GeOOCCH ₃	95	80/0.2
Bu ₂ Ge(OEt) ₂ 1.22	C₅H₅COOH 0.54	OEt Bu₂Ge OOCC6H3	60	140/0.2
Bu ₂ Ge(OEt) ₂ 1.33	1.18	$Bu_2Ge(OOCC_6H_5)_2$	80	198/0.4
Bu₃GeOEt 1.23	0.52	Bu ₃ GeOOCC ₆ H ₅	87	168/1.5
Ph₂Ge(OEt)₂ 1.16	0.45	OEt Ph ₂ Ge OOCC ₆ H ₅	40	180/0.2
Ph ₂ Ge(OEt) ₂ 1.27	0.92	¹ Ge(OOCC ₆ H ₅) ₂		

REACTIONS OF ALKYL ALKOXY GERMANES WITH CARBOXYLIC ACIDS (ACETIC AND BENZOIC ACID)

colourless distillable viscous liquids, which are miscible with benzene and are monomeric in this solvent.

EXPERIMENTAL

All glass apparatus with standard interchangeable joints was used throughout and extreme precautions were taken to exclude moisture. The reagents were dried as described earlier¹⁹. Alkyl germanium alkoxides were prepared either by the ammonia¹⁹ or the oxide method²⁰. Acetic acid was distilled before use. Benzoic, salicylic and mandelic acids were dried at 40–45°/1 mm for 2 h. Molecular weights were determined in a semimicro Gallenkamp ebulliometer and refractive indices determined by Abbe's refractometer.

Germanium was estimated in a few cases as alkyl germanium oxide by hydrolysing the compound with a little aqueous parent alcohol and evaporating slowly

n ²⁰	Mol.wt. found (calcd.)	C (%) found (calcd.)	H (%) jound (calcd.)	Ge (%) found (calcd.)	OR (%) found (calcd.)	Acid (%) found (calcd.)	Alcohol (%) found (calcd.)
1.4400	290			25.67	15.42	20.90	0.16
	(290.9)			(24.96)	(15.49)	(20.31)	(0.18)
1.4475	321			24.32		38.35	0.40
	(304.5)			(23.81)		(38.74)	(0.43)
1.5557	400			22.56		17.73	0.12
	(330.9)			(21.94)		(17.84)	(0.14)
				21.37		33.11	0.32
				(21.05)		(34.26)	(0.36)
1.4635	294			23.08		19.72	0.17
	(302.9)			(23.96)		(19.47)	(0.20)
1.4955	355				12.82		0.17
	(353)				(12.76)		(0.20)
	452	61.57	7.10			56.15	0.40
	(429)	(61.58)	(6.58)			(56.45)	(0.44)
1.4930	371	62.64	9.08			33.50	0.20
	(365)	(62.52)	(8.83)			(33.15)	(0.20)
1.5600		60.80	5.64				0.13
		(58.08)	(5.13)				(0.16)
		63.78	4.72			52.1	0.34
		(66.73)	(4.29)			(51.64)	(0.37)

R ₂ Ge(OR) ₂ or R ₅ GeOR (g)	Acid added (g)	Product formed	B.p. (°C/mm)	Yield (%)	Moh wt. found (cutcd.)	11 ²⁰	C(%) found (calcd.)	H (%) found (calcd.)	Alcohol (g) found (catcd.)
Bu ₁ Ge(OEt) ₂ 1.14	<i>о</i> -нос ₆ н₄соон 0.57	Bu ₂ Ge C ₆ H ₄	158/0.5	85	330 (322.9)	1.5395	55.77 (56.37)	6.86 (6.96)	0.32 (0.38)
Bu ₃ GeOEt 1.22	0.58	Bu ₃ GeO C ₆ H ₄ Bu ₃ GeOOC	160/0.5	87	367 (381)	1.5065	58.92 (59.89)	8.45 (8.46)	0.14 (0.19)
Ph2Ge(OEt)2 1.60	0.70	Ph2Ge 000 C6H4		95	406 (362.9)		63.66 (62.88)	4.85 (4.85)	0,40 (0.46)
Bu2Ge(OEt)2 1.26	с ₆ н,снонсоон 0.69	COOH Bu2Gt OOC CHC6H	CHC ₆ H ₅ Sublimes 150-160/0.4	06	lusoluble in benzene		56.89 (57.02)	7.52 (7.18)	0.38 (0.42)
Bu ₃ GeOEt 1.44	0.38	Bu ₃ G¢OOC 1 Bu, G¢OCHC,H.	203/0.4	70	576 (637.8)	1.4875	59.38 (60.26)	9.48 (9.44)	0.18 (0.23)

230

at 120-130°. Alkoxy contents were estimated by oxidimetric method²¹. Acetate and benzoate were estimated by titrating the compound against standard sodium hydroxide solution. Carbon and hydrogen analysis were carried out at the Central Drug Research Institute, Lucknow (India).

Reaction between tributylgermanium ethoxide and benzoic acid in molar ratio 1:1:

Tributylgermanium ethoxide (1.23 g) was allowed to react with (0.52 g) of benzoic acid and benzene (50 g). Contents were refluxed under a column for 4 h and then binary azeotrope of ethanol and benzene was slowly fractionated. Alcohol found in the azeotrope was (0.20 g). The solvent was removed under reduced pressure and the compound was distilled at 160°/0.5 mm (1.35 g). Yield 87%. (Found: C, 62.64; H, 9.08; Benzoate, 33.50. $C_{19}H_{32}GeO_2$ calcd.: C, 62.52; H, 8.83; Benzoate, 33.15%.) For sake of brevity, all other reactions are summarised in Tables 1 and 2.

ACKNOWLEDGEMENTS

Authors are thankful to the C.S.I.R., New Delhi for providing a Junior Research Fellowship to one of them (S. Mathur) and to Germanium Research Committee for making available through the Institute for Organic Chemistry, T.N.O. Utrecht, the Netherlands, samples of starting materials.

SUMMARY

A number of carboxylates of alkyl germanes have been prepared for the first time from alkyl alkoxy germanes. Their molecular weights and refractive indices have been determined.

REFERENCES

- 1 H. H. ANDERSON, J. Am. Chem. Soc., 72 (1950) 2089.
- 2 H. H. ANDERSON, J. Am. Chem. Soc., 73 (1951) 5798.
- 3 H. H. ANDERSON, J. Am. Chem. Soc., 73 (1951) 5800.
- 4 H. H. ANDERSON, J. Am. Chem. Soc., 74 (1952) 2370.
- 5 H. H. ANDERSON, J. Am. Chem. Soc., 78 (1956) 1692.
- 6 A. G. BROOK AND H. GILMAN, J. Am. Chem. Soc., 76 (1954) 77.
- 7 M. LESBRE AND J. SATGE, Compt. Rend., 254 (1962) 4051.
- 8 I. F. LUTSENKO, YU. I. BAUKOV AND B. N. KHASAPOV, Zh. Obshch. Khim., 33 (1963) 2724.
- 9 YU. I. BAUKOV AND I. F. LUTSENKO, Zh. Obshch. Khim., 34 (1964) 3453.
- 10 F. RIJKENS AND G. J. M. VAN DER KERK, Investigations in the field of Organogermanium Chemistry, 1964, 141.
- 11 R. N. KAPOOR AND R. C. MEHROTRA, J. Am. Chem. Soc., 80 (1958) 3569.
- 12 G. CHANDRA AND R. C. MEHROTRA, J. Indian. Chem. Soc., in press.
- 13 I. D. VARMA AND R. C. MEHROTRA, J. Prakt. Chem., 10 (1960) 247.
- 14 R. C. MEHROTRA, T. N. MISRA AND S. N. MISRA, J. Indian. Chem. Soc., 43 (1966) 61.
- 15 P. P. SHARMA AND R. C. MEHROTRA, private communication.
- 16 B. C. PANT, Ph. D. Thesis, University of Rajasthan, Jaipur (India), 1963.
- 17 A. K. RAI, R. K. MEHROTRA AND R. C. MEHROTRA, J. Prakt. Chem., 4 (1963) 105.
- 18 R. K. MITTAL, Ph. D. Thesis, University of Rajasthan, Jaipur (India), 1963.
- 19 S. MATHUR, G. CHANDRA, A. K. RAI AND R. C. MEHROTRA, J. Organometal. Chem., 4 (1965) 294.
- 20 R. C. MEHROTRA AND S. MATHUR, J. Organometal. Chem., 6 (1966) 11.
- 21 D. C. BRADLEY, F. M. A. HALIM AND W. WARDLAW, J. Chem. Soc., (1950) 3450.